IEA/IEC/ISO Workshop

Slide 1 of 26

This presentation

In Scope

- Residential buildings
- · Commercial buildings
- People

Not in Scope

- · Industrial energy use
- Sensor networks
- The meter
- · Anything on the grid side of the meter

Slide 3 of 26

Measurement Standards - in progress

- Test procedures
 - Network equipment (home, office, service provider)
 - Electronic products
 - Low-power modes w/network connectivity
 - Appliances
- Evaluation criteria
- · Limits / Specifications

 Issues: configuration (hardware, software), interface issues, utilization, etc.

This workshop

Measurement Standards

Stated focus:

"technical standards to define and measure energy efficiency performance ... standardised methodologies ... support the implementation of energy efficiency practices"

Observing or evaluating use and savings.

Network Standards

Networks **require** standards to work at all. Network standards:

- strongly determine energy use and functionality.
 - can prohibit or require energy-saving features

Slide 2 of 26

Networks and Energy

Network equipment

Routers, switches, modems, wireless APs, ...

... vs **networked** equipment

PCs, printers, set-top boxes, ...

How networks drive energy use

- Direct
 - -Network interfaces
 - -Network products
- Induced in Networked products
 - Increased power levels
 - Increased time in higher power modes (to maintain network presence)

Slide 4 of 26

Measurement Standards - attention needed

- Resist temptation to evaluate electronics for "efficiency"
 - Instead focus on functions, capabilities
- Use existing networks for energy-related measurement
 - Critical for management
- Speed of technology changes
 - Existing standards mechanisms too slow

Slide 5 of 26 Slide 6 of 26

• Communication, computation

Slide 7 of 26

Slide 9 of 26

OSI Network Model

(Open Systems Interconnection Reference Model)

<u>Layer</u>	<u>Name</u>	<u>Function</u>
7	Application	"I want a web page"
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data link	
1	Physical	"Bits on a wire" (or non-wire)
		1011100001010011111010100010101

("8th layer" — User Interface)

Slide 8 of 26

OSI Network Model

(Open Systems Interconnection Reference Model)

<u>Layer</u>	<u>Name</u>	<u>Function</u>
7	Applica	ition "I want a web page"
6	Presentation	
5	Session	Key Advantages
4	Transp	 Can replace individual layers without affecting higher and lower layers
3	Netwo	Facilitates interoperability
2	Data li	 All revolves around Internet Protocol
1	Physica	"Bits on a wire" (or non-wire)

("8th layer" — User Interface)

10111000010100111111010100010101

"Devices whose primary function is **Information** (obtain, store, manage, present)"

- Electronics are an end use of electricity
 - Includes both Information Technology (IT) and Consumer Electronics (CE)
 - -Much of this is digitally networked
- Electronics
 - based in information
- Conventional end uses (HVAC, lighting, appliances, ...)
 - all based in physics

Slide 10 of 26

What is a building network?

People
Light Sources
Light modifiers
Thermal sources, ventilation
Displays
Sensors
Appliances

Building networks today

- · At an early stage of development
- Not inevitable that building networks will save energy
- Much (most?) activity in building networks is driven by short-term business interests, not saving energy
- "Home Automation" to date rarely informed by energy
- Building networks best understood as a means to provide **functionality**, NOT as a means to save **energy**

Slide 11 of 26 Slide 12 of 26

What is a building network?

Slide 13 of 26

Slide 14 of 26

Universal Interoperability

Any device should work with all other objects in any space

- - Coordination, cooperation
- · Across people

Slide 15 of 26

- Age, disability, culture, activity, context, ...

Represent the physical world in the information world

- Need a standard "dictionary": things, ideas, principles, actions, etc.
 - Standard "names" for common elements
 - · Standard translations for all languages
 - Embody these in protocols, data dictionaries
 - Embody in user interfaces
 - Identify the meaning (semantics) of the information
 - not how it is encoded or represented ...
 - ... except as corresponds to the user interface

build·ing [bil-ding] net·work [nět'wûrk']

Slide 16 of 26

Physical World Concepts

- Building elements (energy using or not)
 - Lights, climate control devices, windows, displays, rooms, sensors, appliances, people, ...
- - Presence, schedules, prices, events, preferences, ...
- Characteristics
 - Physical location, power levels, light levels, ...
- Actions
 - Dim, open, go to sleep, ...
 - Announcing and requesting

"Affordances"; metaphors

Standard Concepts

- **User Interfaces**
 - Automobiles: controls, roads, ...
 - Tape transport: Play, pause, stop, fast-forward, eject, ...
- **Document conventions**
 - Fonts, margins, headings, columns, ...
 - Web page conventions: forward, back, navigation, links, ...
- Data and File formats
 - ASCII, PDF, HTML, ...
- **Email conventions**
 - Structure, addressing, ...

All present in device ⇔ device and device ⇔ person communication

Slide 17 of 26 Slide 18 of 26

People

- ... are often absent from design, presentation
- ... best understood as nodes on the building network
 - Even more than portable electronics, they move
- ... need standard interfaces, just like devices do
 - Nature of interface different, but principle same
- User interface design should be a starting point
 - to help create dictionary
 - before we design protocols
- Ensure that devices are adaptable to different people
 - Needs, desires, capabilities

Slide 19 of 26

User Interfaces

- Standard Interface elements common throughout daily life
- Key to safety, ease of use, efficiency
- Many use graphics, color, location, etc. to improve functionality and reduce languagedependence
- Commonality limited to comprehension needs
- Can deviate from standards when the good reason

Slide 20 of 26

User Interfaces

Key Elements

• Terms

Colors

Symbols

Metaphors

- · Consistent across:
 - Manufacturers
 - Products
 - Countries
- Simple
- Accessible
- Portable

Slide 21 of 26

Non-Interoperability w/ devices or w/ people

Failure to accomplish interoperability:

- Is annoying

- Costs product manufacturers

• Design

Manufacture / Sales

- Wastes energy · Difficult or impossible to match wanted service to delivered

- Impedes addressing climate change

Slide 22 of 26

Relation to Existing Technology

- Adopt standard network technology up through TCP/IP for building networks
 - No reason to duplicate
 - Need to share infrastructure and interoperate with electronic devices
 - Want connectivity to Internet
- Be prepared to jettison any / all existing technology
 - For product, standards design only
 - Need gateways to legacy systems for extended period
- · Adopt "Guiding Principles" for efficient networks
 - See: IEA Digital Networks workshop, May 2007

Recommendations for Standards Orgs.

- Adopt goal of "Universal Interoperability" as organizing principle for building network standards
- Organize all relevant standards orgs. to play proper role; divide up work, responsibility; avoid duplication
- Create Building Network Task Force (BNTF) as sibling to Internet Engineering Task Force (IETF)

Get started as soon as possible

Slide 23 of 26 Slide 24 of 26

Conclusions

Network standards

- strongly determine energy use and functionality.
- can prohibit or require energy-saving features

Building Networks

- Inevitable
- Will greatly influence energy
- Essential for many savings opportunities

Standards organizations

- Must lead on building networks topic for good outcome
- Time to act is today

Slide 25 of 26

Building Networks and the "Smart Grid"

- · If the "Smart Grid" stops at the meter:
 - I have nothing to say
- If the "Smart Grid" extends through the meter:
 - (I assume real-time pricing; don't care how transmitted)
 - Suggests one architecture that extends from power plant to each end-use device
 - Will impede improvements in grid
 - Will impede improvements in buildings
 - No barrier to occasional "opt-in" agreements / exchanges between devices and outside entities
 - Demand response, local generation and storage, ..
 - The meter is our friend

Slide 27 of 26

Backup

Building Networks

- Electronics
 - Products whose primary function is information (acquire, process, store, transmit, display)
- **Lighting** sources, controls, shades
- Climate Control sources, distribution, openings
- Security
- Sensors
- · Other (Appliances, Misc.)
- Human beings (future: each human has IP address?)
- Future: All one network
 - separation for illustration only

Slide 28 of 26

Backup

Relation to Existing Technology

- · Fund academic research on key topics
 - Network architecture
 - Presence, authority, security, user interfaces, protocol design,
- Path to future requires some "leaps" in technology and standards
 - Incrementalism <u>alone</u> is the path to mediocrity
- If devices interoperable with people, much easier to be interoperable with each other

Backup

Fundamentals

Electronic networks (IT, CE)

- Information Technology, Consumer Electronics
- · Basis: Information
- Functionality: Well-developed
- Energy: Mixed results

Building networks

- Lighting, climate, appliances, misc., security*, ...
- Basis: Physics
- · Functionality: Not well developed
- Energy: Too early to say

Slide 29 of 26

Backup

Complexity

While some integrators are skeptical about the prewired, preprogrammed NHS rack from Sony, others embrace the solution for its simplicity.

- Complexity is easy
 Ordinary outcome
- Simplicity (and power) is hard

 Doable

 Well worth effort

Slide 31 of 26